Gcore named a Leader in the GigaOm Radar for AI Infrastructure!Get the report
  1. Home
  2. Blog
  3. Generative AI: The Future of Creativity, Powered by IPU and GPU

Generative AI: The Future of Creativity, Powered by IPU and GPU

  • By Gcore
  • September 18, 2023
  • 8 min read
Generative AI: The Future of Creativity, Powered by IPU and GPU

In this article, we explore how Intelligence Processing Units (IPUs) and graphics processing units (GPUs) drive the rapid evolution of generative AI. You’ll learn how generative AI works, how IPU and GPU help in its development, what’s important when choosing AI infrastructure, and you’ll see generative AI projects by Gcore.

What Is Generative AI?

Generative AI, or GenAI, is artificial intelligence that can generate content in response to users’ prompts. The content types generated include text, images, audio, video, and code. The goal is for the generated content to be human-like, suitable for practical use, and to correspond with the prompt as much as possible. GenAI is trained by learning patterns and structures from input data and then utilizing that knowledge to generate new and unique outputs.

Here are a few examples of the GenAI tools with which you may be familiar:

  • ChatGPT is an AI chatbot that can communicate with humans and write high-quality text and code. It has been taught using vast quantities of data available on the internet.
  • DALL-E 2 is an AI image generator that can create images from text descriptions. DALL-E 2 has been trained on a large set of images and text, producing images that look lifelike and attractive.
  • Whisper is a speech-to-text AI system that can identify, translate, and transcribe 57 languages (a number that continues to grow.) It has been trained on 680,000 hours of multilingual data. This is a GenAI example in which accuracy is more important than creativity.

GenAI has potential applications in various fields. According to the 2023 McKinsey survey of different industries, marketing and sales, product and service development, and service operations are the most commonly reported uses of GenAl this year.

Popular Generative AI Tools

The table below shows examples of different Generative AI tools: chatbots, text-to-image generators, text-to-video generators, speech-to-text generators, and text-to-code generators. Some of them are already mature whereas others are still in beta testing (as marked on the table) but look promising.

GenAI typeApplicationsEngines/ModelsAccessDeveloper
ChatbotsChatGPTGPT-3.5, GPT-4Free, paidOpenAI
Bard BetaLaMDAFreeGoogle
Bing ChatGPT-4FreeMicrosoft
Text-to-image generatorsDALL-E 2 BetaGPT-3, CLIPFreeOpenAI
Midjourney BetaLLMPaidMidjourney
Stable DiffusionLDM, CLIPFreeStability AI
Text-to-video generatorsPika Labs BetaUnknownFreePika Labs
Gen-2LDMPaidRunaway
Imagen Video BetaCDM, U-NetN/AGoogle
Speech-to-text generatorsWhisperCustom GPTFreeOpenAI
Google Cloud Speech-to-TextConformer Speech Model technologyPaidGoogle
DeepgramCustom LLMPaidDeepgram
Text-to-code generatorsGitHub CopilotOpenAI CodexPaidGitHub, OpenAI
Amazon CodeWhispererUnknownFree, paidAmazon
ChatGPTGPT-3.5, GPT-4Free, paidOpenAI

These GenAI tools require specialized AI infrastructure, such as servers with IPU and GPU modules, to train and function. We will discuss IPUs and GPUs later. First, let’s understand how GenAI works on a higher level.

How Does Generative AI Work?

A GenAI system learns structures and patterns from a given dataset of similar content, such as massive amounts of text, photos, or music; for example, ChatGPT was trained on 570 GB of data from books, websites, research articles, and other forms of content available on the internet. According to ChatGPT itself, this is the equivalent of approximately 389,120 full-length eBooks in ePub format! Using that knowledge, the GenAI system then creates new and unique results. Here is a simplified illustration of this process:

Figure 1: A simplified process of how GenAI works

Let’s look at two key phases of how GenAI works: training GenAI on real data and generating new data.

Training on Real Data

To learn patterns and structures, GenAI systems utilize different types of machine learning and deep learning techniques, most commonly neural networks. A neural network is an algorithm that mimics the human brain to create a system of interconnected nodes that learn to process information by changing the weights of the connections between them. The most popular neural networks are GANs and VAEs.

Generative adversarial networks (GANs)

Generative adversarial networks (GANs) are a popular type of neural network used for GenAI training. Image generators DALL-E 2 and Midjourney were trained using GANs.

GANs operate by setting two neural networks against one another:

  • The generator produces new data based on the given real data set.
  • The discriminator determines whether the newly generated data is genuine or artificially generated, i.e., fake.

The generator tries to fool the discriminator. The ultimate goal is to generate data that the discriminator can’t distinguish from real data.

Variational autoencoders (VAEs)

Variational autoencoders (VAEs) are another well-known type of neural network used for image, text, music, and other content generation. The image generator Stable Diffusion was trained mostly using VAEs.

VAEs consist of two neural networks:

  • The encoder receives training data, such as a photo, and maps it to a latent space. Latent space is a lower dimensional representation of the data that captures the essential features of the input data.
  • The decoder analyzes the latent space and generates a new data sample, e.g., a photo imitation.

Comparing GANs and VAEs

Here are the basic differences between VAEs and GANs:

  • VAEs are probabilistic models, meaning they can generate new data that is more diverse than GANs.
  • VAEs are easier to train but don’t generally produce as high-quality images as GANs. GANs can be more difficult to work with but produce better photo-realistic images.
  • VAEs work better for signal processing use cases, such as anomaly detection for predictive maintenance or security analytics applications, while GANs are better at generating multimedia.

To get more efficient AI models, developers often train them using combinations of different neural networks.The entire training process can take minutes to months, depending on your goals, dataset, and resources.

Generating New Data

Once a generative AI tool has completed its training, it can generate new data; this stage is called inference. A user enters a prompt to generate the content, such as an image, a video, or a text. The GenAI system produces new data according to the user’s prompt.

For the most relevant results, it is ideal to train generative AI systems with a focus on a particular area. As a crude example, if you want a GenAI system to produce high-quality images of kangaroos, it’s best to train the system on images of kangaroos rather than on all existing animals. That’s why gathering relevant data to train AI models is one of the key challenges. This requires the tight collaboration of subject matter experts and data scientists.

How IPU and GPU Help to Develop Generative AI

There are two primary options when it comes to how you develop a generative AI system. You can utilize a prebuilt AI model and fine-tune it to your needs, or embark on the ambitious journey of training an AI model from the ground up. Regardless of your approach, access to AI infrastructure—IPU and GPU servers—is indispensable. There are two main reasons for this:

  • GPU and IPU architectures are adapted for AI workloads
  • GPU and IPU are available in the Cloud

Adapted Architecture

Intelligence Processing Units (IPUs) and graphics processing units (GPUs) are specialized hardware designed to accelerate the training and inference of AI models, including models for GenAI training. Their main advantage is that each IPU or GPU module has thousands of cores simultaneously processing data. This makes them ideal for parallel computing, essential in AI training.

As a result, GPUs are usually better deep learning accelerators than, for example, CPUs, which are suitable for sequential tasks but not parallel processing. While the server version of the CPU can have a maximum of 128 cores, a processor in the IPU, for example, has 1472 cores.

Here are the basic differences between GPUs and IPUs:

  • GPUs were initially designed for graphics processing, but their efficient parallel computation capabilities also make them well-suited for AI workloads. GPUs are the ideal choice for training and inference ML models. There are several AI-focused GPU hardware vendors on the market, but the clear leader is NVIDIA.
  • IPUs are a newer type of hardware designed specifically for AI workloads. They are even more efficient than GPUs at performing parallel computations. IPUs are ideal for training and deploying the most sophisticated AI applications, like large language models (LLMs.) Graphcore is the developer and sole vendor of IPUs, but there are some providers, like Gcore, that offer Graphcore IPUs in the cloud.

Availability in the Cloud

Typically, even enterprise-level AI developers don’t buy physical IPU/GPU servers because they are extremely expensive, costing up to $270,000. Instead, developers rent virtual and bare metal IPU/GPU instances from cloud providers on a per-minute or per-hour basis. This is also more convenient because AI training is an iterative process. When you need to run the next training iteration, you rent a server or virtual machine and pay only for the time you actually use it. The same applies to deploying a trained GenAI system for user access: You’ll need the parallel processing capabilities of IPUs/GPUs for better inference speed when generating new data, so you have to either buy or rent this infrastructure.

What’s Important When Choosing AI Infrastructure?

When choosing AI infrastructure, you should consider which type of AI accelerator better suits your needs in terms of performance and cost.

GPUs are usually an easier way to train models since there are a lot of prebuilt frameworks adapted for GPUs, including PyTorch, TensorFlow, and PaddlePaddle. NVIDIA also offers CUDA for its GPUs; this is a parallel computing software that works perfectly with programming languages widely used in AI development, like C and C++. As a result, GPUs are more suitable if you don’t have deep knowledge of AI training and fine-tuning, and want to get results faster using prebuilt AI models.

IPUs are better than GPUs for complex AI training tasks because they were designed specifically for that task, not for video rendering, for example, as GPUs were originally designed to do. However, due to its newness, IPUs support fewer prebuilt AI frameworks out-of-the-box than GPUs. When you are trying to perform a novel AI training task and therefore don’t have a prebuilt framework, you need to adapt an AI framework or AI model and even write code from scratch to run it. All of this requires technical expertise. However, Graphcore is actively developing SDKs and instructions to ease the use of their hardware.

Graphcore’s IPUs also support packing, a technique that significantly reduces the time required to pre-train, fine-tune, and infer from LLMs. Below is an example of how IPUs excel GPUs in inference for a language learning model based on the BERT architecture when using packing.

Figure 2: IPU outperforms GPU in inference for a BERT-flavored LLM when using packing

Cost-effectiveness is another important consideration when choosing an AI infrastructure. Look for benchmarks that compare AI accelerators in terms of performance per dollar/euro. This can help you to identify efficient choices by finding the right balance between price and compute power, and could save you a lot of money if you plan a long-term project.

Understanding the potential costs of renting AI infrastructure helps you to plan your budget correctly. Research the prices of cloud providers and calculate how much a specific server with a particular configuration will cost you per minute, hour, day, and so on. For more accurate calculations, you need to know the approximate time you’ll need to spend on training. This requires some mathematical effort, especially if you’re developing a GenAI model from scratch. To estimate the training time, you can count the number of operations needed or look at the GPU time.

Our Generative AI Projects

Gcore’s GenAI projects offer powerful examples of the fine-tuning approach to AI training, using IPU infrastructure.

English to Luxembourgish Translation Service

Gcore’s speech-to-text AI service translates English speech into Luxembourgish text on the go. The tool is based on the Whisper neural network and has been fine-tuned by our AI developers.

Figure 3: The UI of Gcore’s speech-to-text AI service

The project is an example of fine-tuning an existing speech-to-text GenAI model when it doesn’t support a specific language. The base version of Whisper didn’t support Luxembourgish, so our developers had to train the model to help Whisper learn this skill. A GenAI tool with any local or rare language not supported by existing LLMs could be created in the same way.

AI Image Generator

Al Image Generator is a generative AI tool free for all users registered to the Gcore Platform. It takes your text prompts and creates images of different styles. To develop the Image Generator, we used the prebuilt Openjourney GenAI model. We fine-tuned it using datasets for specific areas, such as gaming, to extend its capabilities and generate a wider range of images. Like our speech-to-text service, the Image Generator is powered by Gcore’s AI IPU infrastructure.

Figure 4: Image examples generated by Gcore’s AI Image Generator

The AI Image Generator is an example of how GenAI models like Openjourney can be customized to generate data with the style and context you need. The main problem with a pretrained model is that it is typically trained on large datasets and may lack accuracy when you need more specific results, like a highly specific stylization. If the prebuilt model doesn’t produce content that matches your expectations, you can collect a more relevant dataset and train your model to get more accurate results, which is what we did at Gcore. This approach can save significant time and resources, as it doesn’t require training the model from scratch.

Future Gcore AI Projects

Here’s what’s in the works for Gcore AI:

  • Custom AI model tuning will help to develop AI models for different purposes and projects. A customer can provide their dataset to train a model for their specific goal. For example, you’ll be able to generate graphics and illustrations according to the company’s guidelines, which can reduce the burden on designers.
  • AI models marketplace will provide ready-made AI models and frameworks in Gcore Cloud, similar to how our Cloud App Marketplace provides prebuilt cloud applications. Customers will be able to deploy these AI models on Virtual Instances or Bare Metal servers with GPU and IPU modules and either use these models as they are or fine-tune them for specific use cases.

Conclusion

IPUs and GPUs are fundamental to parallel processing, neural network training, and inference. This makes such infrastructure essential for generative AI development. However, GenAI developers need to have a clear understanding of their training goals. This will allow them to utilize the AI infrastructure properly, achieving maximum efficiency and best use of resources.

Try IPU for free

Related articles

Gcore recognized as a Leader in the 2025 GigaOm Radar for AI Infrastructure

Gcore recognized as a Leader in the 2025 GigaOm Radar for AI Infrastructure

We’re proud to share that Gcore has been named a Leader in the 2025 GigaOm Radar for AI Infrastructure—the only European provider to earn a top-tier spot. GigaOm’s rigorous evaluation highlights our leadership in platform capability and innovation, and our expertise in delivering secure, scalable AI infrastructure.Inside the GigaOm Radar: what’s behind the Leader statusThe GigaOm Radar report is a respected industry analysis that evaluates top vendors in critical technology spaces. In this year’s edition, GigaOm assessed 14 of the world’s leading AI infrastructure providers, measuring their strengths across key technical and business metrics. It ranks providers based on factors such as scalability and performance, deployment flexibility, security and compliance, and interoperability.Alongside the ranking, the report offers valuable insights into the evolving AI infrastructure landscape, including the rise of hybrid AI architectures, advances in accelerated computing, and the increasing adoption of edge deployment to bring AI closer to where data is generated. It also offers strategic takeaways for organizations seeking to build scalable, secure, and sovereign AI capabilities.Why was Gcore named a top provider?The specific areas in which Gcore stood out and earned its Leader status are as follows:A comprehensive AI platform offering Everywhere Inference and GPU Cloud solutions that support scalable AI from model development to productionHigh performance powered by state-of-the-art NVIDIA A100, H100, H200 and GB200 GPUs and a global private network ensuring ultra-low latencyAn extensive model catalogue with flexible deployment options across cloud, on-premises, hybrid, and edge environments, enabling tailored global AI solutionsExtensive capacity of cutting-edge GPUs and technical support in Europe, supporting European sovereign AI initiativesChoosing Gcore AI is a strategic move for organizations prioritizing ultra-low latency, high performance, and flexible deployment options across cloud, on-premises, hybrid, and edge environments. Gcore’s global private network ensures low-latency processing for real-time AI applications, which is a key advantage for businesses with a global footprint.GigaOm Radar, 2025Discover more about the AI infrastructure landscapeAt Gcore, we’re dedicated to driving innovation in AI infrastructure. GPU Cloud and Everywhere Inference empower organizations to deploy AI efficiently and securely, on their terms.If you’re planning your AI infrastructure roadmap or rethinking your current one, this report is a must-read. Explore the report to discover how Gcore can support high-performance AI at scale and help you stay ahead in an AI-driven world.Download the full report

Protecting networks at scale with AI security strategies

Network cyberattacks are no longer isolated incidents. They are a constant, relentless assault on network infrastructure, probing for vulnerabilities in routing, session handling, and authentication flows. With AI at their disposal, threat actors can move faster than ever, shifting tactics mid-attack to bypass static defenses.Legacy systems, designed for simpler threats, cannot keep pace. Modern network security demands a new approach, combining real-time visibility, automated response, AI-driven adaptation, and decentralized protection to secure critical infrastructure without sacrificing speed or availability.At Gcore, we believe security must move as fast as your network does. So, in this article, we explore how L3/L4 network security is evolving to meet new network security challenges and how AI strengthens defenses against today’s most advanced threats.Smarter threat detection across complex network layersModern threats blend into legitimate traffic, using encrypted command-and-control, slow drip API abuse, and DNS tunneling to evade detection. Attackers increasingly embed credential stuffing into regular login activity. Without deep flow analysis, these attempts bypass simple rate limits and avoid triggering alerts until major breaches occur.Effective network defense today means inspection at Layer 3 and Layer 4, looking at:Traffic flow metadata (NetFlow, sFlow)SSL/TLS handshake anomaliesDNS request irregularitiesUnexpected session persistence behaviorsGcore Edge Security applies real-time traffic inspection across multiple layers, correlating flows and behaviors across routers, load balancers, proxies, and cloud edges. Even slight anomalies in NetFlow exports or unexpected east-west traffic inside a VPC can trigger early threat alerts.By combining packet metadata analysis, flow telemetry, and historical modeling, Gcore helps organizations detect stealth attacks long before traditional security controls react.Automated response to contain threats at network speedDetection is only half the battle. Once an anomaly is identified, defenders must act within seconds to prevent damage.Real-world example: DNS amplification attackIf a volumetric DNS amplification attack begins saturating a branch office's upstream link, automated systems can:Apply ACL-based rate limits at the nearest edge routerFilter malicious traffic upstream before WAN degradationAlert teams for manual inspection if thresholds escalateSimilarly, if lateral movement is detected inside a cloud deployment, dynamic firewall policies can isolate affected subnets before attackers pivot deeper.Gcore’s network automation frameworks integrate real-time AI decision-making with response workflows, enabling selective throttling, forced reauthentication, or local isolation—without disrupting legitimate users. Automation means threats are contained quickly, minimizing impact without crippling operations.Hardening DDoS mitigation against evolving attack patternsDDoS attacks have moved beyond basic volumetric floods. Today, attackers combine multiple tactics in coordinated strikes. Common attack vectors in modern DDoS include the following:UDP floods targeting bandwidth exhaustionSSL handshake floods overwhelming load balancersHTTP floods simulating legitimate browser sessionsAdaptive multi-vector shifts changing methods mid-attackReal-world case study: ISP under hybrid DDoS attackIn recent years, ISPs and large enterprises have faced hybrid DDoS attacks blending hundreds of gigabits per second of L3/4 UDP flood traffic with targeted SSL handshake floods. Attackers shift vectors dynamically to bypass static defenses and overwhelm infrastructure at multiple layers simultaneously. Static defenses fail in such cases because attackers change vectors every few minutes.Building resilient networks through self-healing capabilitiesEven the best defenses can be breached. When that happens, resilient networks must recover automatically to maintain uptime.If BGP route flapping is detected on a peering session, self-healing networks can:Suppress unstable prefixesReroute traffic through backup transit providersPrevent packet loss and service degradation without manual interventionSimilarly, if a VPN concentrator faces resource exhaustion from targeted attack traffic, automated scaling can:Spin up additional concentratorsRedistribute tunnel sessions dynamicallyMaintain stable access for remote usersGcore’s infrastructure supports self-healing capabilities by combining telemetry analysis, automated failover, and rapid resource scaling across core and edge networks. This resilience prevents localized incidents from escalating into major outages.Securing the edge against decentralized threatsThe network perimeter is now everywhere. Branches, mobile endpoints, IoT devices, and multi-cloud services all represent potential entry points for attackers.Real-world example: IoT malware infection at the branchMalware-infected IoT devices at a branch office can initiate outbound C2 traffic during low-traffic periods. Without local inspection, this activity can go undetected until aggregated telemetry reaches the central SOC, often too late.Modern edge security platforms deploy the following:Real-time traffic inspection at branch and edge routersBehavioral anomaly detection at local points of presenceAutomated enforcement policies blocking malicious flows immediatelyGcore’s edge nodes analyze flows and detect anomalies in near real time, enabling local containment before threats can propagate deeper into cloud or core systems. Decentralized defense shortens attacker dwell time, minimizes potential damage, and offloads pressure from centralized systems.How Gcore is preparing networks for the next generation of threatsThe threat landscape will only grow more complex. Attackers are investing in automation, AI, and adaptive tactics to stay one step ahead. Defending modern networks demands:Full-stack visibility from core to edgeAdaptive defense that adjusts faster than attackersAutomated recovery from disruption or compromiseDecentralized detection and containment at every entry pointGcore Edge Security delivers these capabilities, combining AI-enhanced traffic analysis, real-time mitigation, resilient failover systems, and edge-to-core defense. In a world where minutes of network downtime can cost millions, you can’t afford static defenses. We enable networks to protect critical infrastructure without sacrificing performance, agility, or resilience.Move faster than attackers. Build AI-powered resilience into your network with Gcore.Check out our docs to see how DDoS Protection protects your network

Introducing Gcore for Startups: created for builders, by builders

Building a startup is tough. Every decision about your infrastructure can make or break your speed to market and burn rate. Your time, team, and budget are stretched thin. That’s why you need a partner that helps you scale without compromise.At Gcore, we get it. We’ve been there ourselves, and we’ve helped thousands of engineering teams scale global applications under pressure.That’s why we created the Gcore Startups Program: to give early-stage founders the infrastructure, support, and pricing they actually need to launch and grow.At Gcore, we launched the Startups Program because we’ve been in their shoes. We know what it means to build under pressure, with limited resources, and big ambitions. We wanted to offer early-stage founders more than just short-term credits and fine print; our goal is to give them robust, long-term infrastructure they can rely on.Dmitry Maslennikov, Head of Gcore for StartupsWhat you get when you joinThe program is open to startups across industries, whether you’re building in fintech, AI, gaming, media, or something entirely new.Here’s what founders receive:Startup-friendly pricing on Gcore’s cloud and edge servicesCloud credits to help you get started without riskWhite-labeled dashboards to track usage across your team or customersPersonalized onboarding and migration supportGo-to-market resources to accelerate your launchYou also get direct access to all Gcore products, including Everywhere Inference, GPU Cloud, Managed Kubernetes, Object Storage, CDN, and security services. They’re available globally via our single, intuitive Gcore Customer Portal, and ready for your production workloads.When startups join the program, they get access to powerful cloud and edge infrastructure at startup-friendly pricing, personal migration support, white-labeled dashboards for tracking usage, and go-to-market resources. Everything we provide is tailored to the specific startup’s unique needs and designed to help them scale faster and smarter.Dmitry MaslennikovWhy startups are choosing GcoreWe understand that performance and flexibility are key for startups. From high-throughput AI inference to real-time media delivery, our infrastructure was designed to support demanding, distributed applications at scale.But what sets us apart is how we work with founders. We don’t force startups into rigid plans or abstract SLAs. We build with you 24/7, because we know your hustle isn’t a 9–5.One recent success story: an AI startup that migrated from a major hyperscaler told us they cut their inference costs by over 40%…and got actual human support for the first time. What truly sets us apart is our flexibility: we’re not a faceless hyperscaler. We tailor offers, support, and infrastructure to each startup’s stage and needs.Dmitry MaslennikovWe’re excited to support startups working on AI, machine learning, video, gaming, and real-time apps. Gcore for Startups is delivering serious value to founders in industries where performance, cost efficiency, and responsiveness make or break product experience.Ready to scale smarter?Apply today and get hands-on support from engineers who’ve been in your shoes. If you’re an early-stage startup with a working product and funding (pre-seed to Series A), we’ll review your application quickly and tailor infrastructure that matches your stage, stack, and goals.To get started, head on over to our Gcore for Startups page and book a demo.Discover Gcore for Startups

Announcing a new AI-optimized data center in Southern Europe

Good news for businesses operating in Southern Europe! Our newest cloud regions in Sines, Portugal, give you faster, more local access to the infrastructure you need to run advanced AI, ML, and HPC workloads across the Iberian Peninsula and wider region. Sines-2 marks the first region launched in partnership with Northern Data Group, signaling a new chapter in delivering powerful, workload-optimized infrastructure across Europe. And Sines-3 expands capacity and availability for the region.Strategically positioned in Portugal, Sines-2 and Sines-3 enhance coverage in Southern Europe, providing a lower-latency option for customers operating in or targeting this region. With the explosive growth of AI, machine learning, and compute-intensive workloads, these new regions are designed to meet escalating demand with cutting-edge GPU and storage capabilities.You can activate Sines-2 and Sines-3 for GPU Cloud or Everywhere Inference today with just a few clicks.Built for AI, designed to scaleSines-2 and Sines-3 bring with them next-generation infrastructure features, purpose-built for today's most demanding workloads:NVIDIA H100 GPUs: Unlock the full potential of AI/ML training, high-performance computing (HPC), and rendering workloads with access to H100 GPUs.VAST NFS (file sharing protocol) support: Benefit from scalable, high-throughput file storage ideal for data-intensive operations, research, and real-time AI workflows.IaaS portfolio: Deploy Virtual Machines, manage storage, and scale infrastructure with the same consistency and reliability as in our flagship regions.Organizations operating in Portugal, Spain, and nearby regions can now deploy workloads closer to end users, improving application performance. For finance, healthcare, public sector, and other organisations running sensitive workloads that must stay within a country or region, Sines-2 and Sines-3 are easy ways to access state-of-the-art GPUs with simplified compliance. Whether you're building AI models, running simulations, or managing rendering pipelines, Sines-2 and Sines-3 offer the performance, capacity, availability, and proximity you need.And best of all, servers are available and ready to deploy today.Run your AI workloads in Portugal todayWith these new Sines regions and our partnership with Northern Data Group, we're making it easier than ever for you to run AI workloads at scale. If you need speed, flexibility, and global reach, we're ready to power your next AI breakthrough.Unlock the power of Sines-2 and Sines-3 today

GTC Europe 2025: watch Seva Vayner on European AI trends

Inference is becoming Europe’s core AI workload. Telcos are moving fast on low-latency infrastructure. Data sovereignty is shaping every deployment decision.At GTC Europe, these trends were impossible to miss. The conversation has moved beyond experimentation to execution, with exciting, distinctly European priorities shaping conversations.Gcore’s own Seva Vayner, Product Director of Edge Cloud and AI, shared his take on this year’s event during GTC. He sees a clear shift in what European enterprises are asking for and what the ecosystem is ready to deliver.Scroll on to watch the interview and see where AI in Europe is heading.“It’s really a pleasure to see GTC in Europe”After years of global AI strategy being shaped primarily by the US and China, Europe is carving its own path. Seva notes that this year’s GTC Europe wasn’t just a regional spin-off. it marked the emergence of a distinctly European voice in AI development.“First of all, it's really a pleasure to see that GTC in Europe happened, and that a lot of European companies came together to have the conversation and build the ecosystem.”As Seva notes, the real excitement came from watching European players collaborate. The focus was less on following global trends and more on co-creating the region’s own AI trajectory.“Inference workloads will grow significantly in Europe”Inference was a throughline across nearly every session. As Seva points out, Europe is still at the early stages of adopting inference at scale, but the shift is happening fast.“Europe is only just starting its journey into inference, but we already see the trend. Over the next 5 to 10 years, inference workloads will grow significantly. That’s why GTC Europe is becoming a permanent, yearly event.”This growth won’t just be driven by startups. Enterprises, governments, and infrastructure providers are all waking up to the importance of real-time, regional inference capabilities.“There’s real traction. Companies are more and more interested in how to deliver low-latency inference. In a few years, this will be one of the most crucial workloads for any GPU cloud in Europe.”“Telcos are getting serious about AI”One of the clearest signs of maturity at GTC Europe was that telcos and CSPs are actively looking to deploy AI. And they’re asking the hard questions about how to integrate it into their infrastructure at a vast scale.“One of the most interesting things is how telcos are thinking about adopting AI workloads on their infrastructure to deliver low latency. Sovereignty is crucial, especially for customers looking to serve training or inference workloads inside their region. And also user experience: how can I get GPU capacity in clusters, or deliver inference in just a few clicks?”This theme—fast, sovereign, self-service AI—popped up again and again. Telcos and service providers want frictionless deployment and local control.“Companies are struggling most with data”While model deployment and infrastructure strategy took center stage, Seva reminds us that data processing and storage remains the bottleneck. Enterprises know they need to adopt AI, but they’re still navigating where and how to store and process the data that fuels it.“One of the biggest struggles for end customers is the data: where it’s processed, where it’s stored, and what kind of capabilities are available. From a European perspective, we already see more and more companies looking for sovereign data privacy and simple, mature solutions for end users.”That’s a familiar challenge for enterprises operating under GDPR, NIS2, and other compliance frameworks. The new wave of AI infrastructure has to be built for performance and for trust.AI in Europe: responsible, scalable, and localSeva’s key takeaway is that AI in Europe is no longer about catching up, it’s about doing it differently. The questions have changed from “Should we do AI?” to “How do we scale it responsibly, reliably, and locally?”From sovereign deployment to edge-first infrastructure, GTC Europe 2025 showed that inference is the foundation of how European businesses plan to run AI. “The ecosystem is coming together,” explains Seva. “And the next five years will be crucial for defining how AI will work: not just in the cloud, but everywhere.”If you’re looking to reduce latency, cut costs, and stay compliant while deploying AI in production, we invite you to download our free ebook, The inference optimization playbook.Download our free inference optimization playbook

Gcore and Orange Business launch innovation program piloting joint solution to deliver sovereign inference as a service

Gcore and Orange Business have kicked off a strategic co-innovation program with the mission to deliver a scalable, production-grade AI inference service that is sovereign by design. By combining Orange Business’ secure, trusted cloud infrastructure and Gcore’s AI inference private deployment service, the collaboration empowers European enterprises and public sector organizations to run inference workloads at scale, without compromising on latency, control, or compliance.Gcore’s AI inference private deployment service is already live on Orange Business’ Cloud Avenue infrastructure. Selected enterprises across industries are actively testing it in real-world scenarios. These pilot customers are exploring how fast, secure, and compliant inference can accelerate their AI projects, cut deployment times, and reduce infrastructure overhead.The prototype will be demonstrated at NVIDIA GTC Paris, at the Taiga Cloud booth G26. Stop by any time to see it in action.The inference supercycle is underwayBy 2030, inference will comprise 70% of enterprise AI workloads. Telcos are well positioned to lead this shift due to their dense edge presence, licensed national data infrastructure, and long-standing trust relationships.Gcore’s inference solution provides a sovereign, edge-native inference layer. It enables users to serve real-time, GPU-intensive applications like agentic AI, trusted LLMs, computer vision, and predictive analytics, all while staying compliant with Europe’s evolving data and AI governance frameworks.From complexity to three clicksEnterprise AI doesn’t need to be hard. Deploying inference workloads at scale used to demand Kubernetes fluency, large MLOps teams, and costly trial-and-error.Now? It’s just three clicks:Pick a model: Choose from NVIDIA NIMs, open source, or proprietary libraries.Choose a region: Select one of Orange Business’ accredited EU data centers.Deploy: See your workloads go live in under 10 seconds.Enterprises can launch inference projects faster, test ideas more quickly, and deliver production-ready AI services without spending months on ML plumbing.Explore our blog to watch a demo showing how enterprises can deploy inference workloads in just three clicks and ten seconds.Sovereign by designAll model data, logs, and inference results are stored exclusively within Orange Business’ own data centers in France, Germany, Norway, and Sweden. Cross-border data transfer is opt-in only, helping ensure alignment with GDPR, sector-specific regulations, and the forthcoming EU AI Act.This platform is built for trust, transparency, and sovereignty by default. Customers maintain full control over their data, with governance baked into every layer of the deployment.Performance without trade-offsGcore’s AI inference solution avoids the latency spikes, cold starts, and resource waste common in traditional cloud AI setups. Key design features include:Smart GPU routing: Directs each request to the nearest in-region GPU, delivering real-time performance with sub-50ms latency.Pre-loaded models: Reduces cold start delays and improves response times.Secure multi-tenancy: Isolates customer data while maximizing infrastructure efficiency.The result is a production-ready inference platform optimized for both performance and compliance.Powering the future of AI infrastructureThis partnership marks a step forward for Europe’s sovereign AI capabilities. It highlights how telcos can serve as the backbone of next-generation AI infrastructure, hosting, scaling, and securing workloads at the edge.With hundreds of edge POPs, trusted national networks, and deep ties across vertical industries, Orange Business is uniquely positioned to support a broad range of use cases, including real-time customer service AI, fraud detection, healthcare diagnostics, logistics automation, and public sector digital services.What’s next: validating real-world performanceThis phase of the Gcore and Orange Business program is focused on validating the solution through live customer deployments and performance benchmarks. Orange Business will gather feedback from early access customers to shape its future sovereign inference service offering. These insights will drive refinements and shape the roadmap ahead of a full commercial launch planned for later this year.Gcore and Orange Business are committed to delivering a sovereign inference service that meets Europe’s highest standards for speed, simplicity, and trust. This co-innovation program lays the foundation for that future.Ready to discover how Gcore and Orange Business can deliver sovereign inference as a service for your business?Request a preview

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.